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Abstract 

A new approach to the estimation of the concentration 
of random stacking faults in close-packed structures 
(and also multilayers) is presented. It is based on the 
Monte Carlo computer simulation of the arrangement 
of stacking faults in a crystal, given by an appropriate 
h-k  sequence. Thus the corresponding intensity 
(structure-factor) distribution along the streaked 
reciprocal-lattice rows may be calculated from nearly 
the same expression as for a perfect multilayer struc- 
ture. In particular, good agreement is observed with 
the computations on the basis of the intensity 
equations derived for several particular cases. Some 
peculiarities in the diffracted intensity distribution of 
crystals with multilayer structures containing random 
stacking faults of different types, or having different 
dimensions of the hexagonal unit cell, are pointed out. 

1. Introduction 

Stacking faults (SF) are frequently observed in close- 
packed structures. In some cases they are expected 
to be randomly distributed, i.e. the spacing between 
them is random. Random stacking faults (RSF) may 
result in one or more of the following diffraction 
effects: shift, broadening, asymmetry of the diffrac- 
tion maxima and redistribution of the integrated 
intensity. Pertinent information about the types of SF 
as well as their concentrations in crystals can be 
obtained from a comparison of theoretically pre- 
dicted diffraction effects with those visible on X-ray 

diffraction patterns. The theory of the intensity of 
X-ray diffuse scattering by the simplest close-packed 
structures such as h.c.p. (2H), f.c.c. (3C) and 4H 
containing random faults has been well developed by 
Wilson (1942), Paterson (1952), Christian (1954), 
Johnson (1963), Lele, Anantharaman & Johnson 
(1967) and Lele, Prasad & Anantharaman (1969). 
Because RSF are also observed in multilayer (long- 
period) polytype-like structures [see Verma & 
Krishna (1966), Nikolin (1984), Sebastian & Krishna 
(1987) and literature quoted therein], attempts have 
been made to construct a more general diffraction 
theory by Kakinoki & Komura (1965), Kakinoki 
(1967), Rushits & Mirzaev (1979), Kagan, Unikel' & 
Fadeeva (1982) and Berliner & Werner (1986). 
Nevertheless, the Kakinoki & Komura (1965) and 
Kakinoki (1967) approach, where the correlation 
between s neighbouring layers must be taken into 
account, becomes exceedingly complex even for 
structures with comparatively low periodicity, since 
2 s- l-order matrices are necessary. Later, the theory 
was developed by Rushits & Mirzaev (1979), who 
studied the stacking disorder due to deformation 
faults only. The Kagan et al. (1982) method treated 
the problem for crystals of any symmetry group and 
complexity but with low defect concentrations. 

In the following, we will give a technique to derive 
the intensity distribution of any given close-packed 
structure with arbitrary content of RSF of all existing 
types. Its distinguishing feature consists of a random 
arrangement of SF's by the Monte Carlo simulation 
computer program. 
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2. Statement of the model 

The initial crystal is set by an appropriate sequence 
of close-packed layers using the h - k  notation, intro- 
duced by Belov (1947), together with the classical 
A B C  notation. The notation 'h '  or 'k '  means that the 
layer is arranged with respect to the two preceding 
ones in a hexagonal or a cubic manner. The regular 
sequence of the layers in a perfect close-packed crys- 
tal can then generally be represented by h - k  symbols, 
e.g. hkk (9R structure), and this means that a regular 
sequence can be constructed by periodic repetition 
of this prescription. We shall start with such a 
sequence for further insertion of stacking faults and 
calculation of the corresponding diffraction intensity 
distribution. 

A question arises concerning the crystal 
dimensions, which are commonly assumed to be 
infinite for analytical solutions. As a consequence of 
limited memory and requirement for speed of com- 
puters the size of simulated crystals is usually re- 
stricted. On the other hand, it is obvious that a 
decrease in the crystal dimensions results in broaden- 
ing of the reflections. Thus it is necessary to investigate 
the influence of crystal size, R, which is expressed in 
terms of the number of given close-packed layers, on 
the diffraction maxima half-width in reciprocal space, 
8. A plot of 8(R)  for the reflections of an f.c.c, crystal 
shows (see Fig. 1) that at R - 5 0 0  layers 8 depends 
weakly on R. However, if we take into account the 
actual accuracy of intensity determination from X-ray 
rotation or oscillation patterns and the benefits of 
lowering the total computation time, as well as a 
pronounced 8 dependence from the RSF concentra- 
tion (see Fig. 1), we may take the crystal size to be 
equal to R = 300-500 layers, especially when qualita- 
tive analysis is desirable. It is necessary to note that 
owing to additional broadening resulting from finite 
crystal dimensions we can determine the SF content 
to within 0.005. Hence, to define low SF concentra- 
tions or to evaluate this value precisely, infinite- 
crystal solutions are prefe~ble  for comparison with 
experimental results. 
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Fig. 1. Half-width of the 111(3C) reflection, 8, as a function of 
crystal size, R. RSF concentration: © a=0; • a=0.01; x 
t~ =0.02. 

Table 1. Stacking faults in close-packed structures 

S t r u c t u r e  

F.c.c. 
(3C) 

H.c.p. 
(2H) 

F a u l t  t y p e  
I n t r i n s i c  

(I) or 
Fault configuration in extrinsic Other 

ABC and h-k notations (E) classification 
. . .  A B C A B C A B C A B C . . .  

k k  k k k  k k k  kk  Free of faults 

• . .  A B C A B A  B C A  B . . .  
k k  khh  k k k  1 Deformation 

. . .  A B C  A B A  C A B  C .  . . Double 
kk  khk  hkk  E deformation 

• . .  A B C  A B A  C B A  . . . Growth 
k k  khk  k k  - -  or twin 

. . .  A B  A B  A B  A B  A B .  . . 
h hh hh hh h Free of faults 

. . .  A B  A B  A C  B C  B C .  . . 
h hh kk  hh h l Deformation 

. . . A B  A B  A C  B A  B A  B. . . 

h hh k k  kh  hh E - -  

. . .  A B A B A C A C A C . . .  
h hh kh  hh h I Growth 

Stacking-fault configurations 

A stacking fault may be defined as a break in the 
normal sequence of layers in a close-packed structure. 
As SF's destroy the stacking rule attributed to the 
initial structure, a definite rearrangement of the h - k  
symbols takes place. Table 1 lists the possible fault 
configurations in the 2H and 3C structures along 
with the different notations used to represent them. 
It is apparent from the table that when a growth fault 
occurs 'h '  changes to 'k '  (or vice versa) in one layer, 
and the deformation fault changes both the arrange- 
ment of the layer in which the discontinuity occurs 
and that of the next one (h ~ k, k ~ h). The extrinsic 
fault results in a three-layer configuration, where one 
k-type layer is sandwiched between the supplanted 
(h ~ k) layers. As is readily verified, this simple rule 
is valid for SF's in multilayer close-packed structures 
as well. For phase transitions at which one multilayer 
structure is transformed into another, SF's of the layer 
displacement type are involved, where a single layer 
is displaced from one close-packed position (say A) 
to another (say B or C) by diffusion processes 
(Nishiyama, Kakinoki & Kajiwara, 1965; Pandey & 
Krishna, 1981). A certain set (group) of such single 
displacements is usually regarded as one elementary 
shift (Mirzaev & Rushits, 1976). In our designation 
such complex shifts may be given by a substitution 
of several layers in the reference sequence for an 
appropriate combination of h - k  symbols inherent in 
the SF under examination. By using the accepted 
rules with respect to any close-packed structure, one 
can introduce all possible fault configurations without 
the limitation of SF concentration. 

A random distribution of SF's is created by means 
of the Monte Carlo simulation computer program. 
As the first step, the Monte Carlo routine generates 
a set of pseudorandom values with uniform separ- 
ation in the interval (0, 1). In the second step, this 
distribution is converted into a set of numbers from 
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1 to R. In this way we obtain a set of sites, where the 
SF's are to be inserted by an appropriate conversion 
of the h-k symbols. Since the ABC sequence can 
readily be obtained from the h-k notation, one can 
calculate the intensity (structure factor) at any posi- 
tion of the reciprocal lattice from nearly the same 
expression as for the perfect multilayer structure, i.e. 
by neglecting f2 ( f  being the scattering power of a 
single layer of the structure): 

where 

I = F 2 =  FF* 

F =  ~ exp [27riLpl N] 
P 

+ ~ exp {27ri[(n- K)/3+ qL/ N]} 
q 

+~, exp{2~ ' i [ (K-n) /3+rL/N]} .  (1) 
r 

Here p, q, r are the numbers of A-, B- and C-type 
layers, respectively; H,K,L  are the hexagonal 
indices. It is common knowledge that only the reflec- 
tions with H -  K ~ 0 mod3 are affected by faulting. 
We put H =  1, K = 0 ,  because Verma & Krishna 
(1966) specified that the relative intensity calculation 
for the 10.L reciprocal-lattice row only is sufficient 
for comparison with the measured intensity distri- 
bution. 

It is obvious that if the crystal contains m SF's, 
there are C~ possible nonregular arrangements 
among R close-packed layers of this crystal. There- 
fore, the resulting intensity distribution along the 10.L 
reciprocal-lattice row may be thought of as a super- 
position of intensities calculated for all different 
variants of SF arrangement. But even for a SF content 

= 0.01 and R = 300 layers, it is rather cumbersome 
to calculate the intensity for all the existing C3aoo = 
1.5x 104 combinations. Trial computations showed 
that satisfactory results may be achieved when 100 
to 200 variants are averaged. 

3. Applications 

The accuracy of this method was verified by compar- 
ing the results of diffracted intensity calculations for 
f.c.c. (3C), h.c.p. (2H) and 9R lattices with growth, 
deformation and extrinsic SF's both obtained with 
the help of the Monte Carlo computer simulation 
technique and with the aid of the intensity expressions 
derived by Wilson (1942), Paterson (1952), Christian 
(1954), Johnson 11963), Lele et al. (19671, Rushits & 
Mirzaev (1979). In all cases the X-ray diffraction 
spectra profiles obtained by different methods are in 
good agreement (e.g. Figs. 2, 3, 4a). Moreover, we 
calculate the diffracted intensity distribution for f.c.c. 
crystals with deformation SF's and compare the 
difference in angular peak position of 111 and 200 
reflections for ~ = 0 and ~ = 0.024. Thus we obtain 

i3C) {3C) 

i iZIi  
d ill{ \! / 

100 101 102 
(2H) (2HI (2H) 

L 

Fig. 2. Calculated variation of the intensity distribution along the 
10.L reciprocal-lattice row of  a 2H crystal containing a random 
distribution of  growth (1), deformation (2), extrinsic (3) stacking 
faults (or =/3 = y = 0.2). The present data ( ) are compared 
with line profiles calculated from the Wilson (O), Christian (O) 
and Lele, Anantharaman & Johnson (x) expressions, respec- 
tively. 
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Fig. 3. Calculated variation of the intensity distribution along the 
10.L reciprocal-lattice row of a 3 C crystal containing a random 
distribution of growth (/3 = 0"7) (1), deformation (a = 0.15) (2), 
extrinsic (7 = 0-25) (3) stacking faults. The present data ( ) 
are compared with line profiles calculated from the Paterson 
(O, 0 )  and Johnson (x) expressions, respectively. 
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Fig. 4. Calculated variation of the intensity distribution along the 
10.L reciprocal-lattice row of  a 9R crystal containing a random 
distribution of  deformation (a), growth (b) and extrinsic (c) 
stacking faults. The Mirzaev & Rushits results are plotted as O. 
The calculated curves have been shifted vertically for different 
values of  SF concentration for clarity. 
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a value for Co Ka radiation of 0.18 ° [which is close 
to the 0.15 ° value given by Warren (1969)] corre- 
sponding to a = 0.029 derived from Warren's (1969) 
relation. This allows us to assume that the method 
proposed is suitable for an X-ray diffraction study of 
RSF's in close-packed structures, and for multilayers 
as well. 

In order to distinguish the effect of the presence 
of various types of RSF in long-period structures, we 
have calculated the intensity distribution along the 
10.L reciprocal-lattice row in a few cases of random 
faulting of 9R and 19T crystals. Fig. 4 shows the 
results of the diffracted intensity calculation for a 9R 
structure with different content of deformation, 
growth and extrinsic RSF's. As is readily verified, the 
calculated diffraction pattern corresponding to each 
kind of SF has its distinctive features. The increase 
in deformation SF concentration (a )  results in equal 
shift and symmetrical broadening of the 9R reflec- 
tions. When a = 0.5 the intensity distribution has the 
only very broadened maxima which coincide with the 
position 101(2H). As the concentration of deforma- 
tion RSF's increases, the reflections from the 9R 
structure with the reverse 9R stacking sequence 
appear and become sharper when they gradually 
approach the 9R-  positions (see Fig. 4a). 

If the 9R structure contains growth RSF's, reflec- 
tions from the twin orientation (9R-)  arise as soon 
as a single growth fault is introduced (see Fig. 4b). 
As their concentration (/3) increases, the reflections 
from both the 9R and 9R-  structures broaden and 
their most intense maxima move closer together. For 
/3 = 0.5 the intensity distribution is the same as for 
a = 0.5 and has a single peak at the position 101(2H). 
As /3 ~ 1 the crystalline structure approaches the 
perfect 6H  lattice with the stacking order of the 
close-packed planes (hkk)2 or (22). 

It may be noted from Fig. 4(c) that the intensity 
redistribution due to the extrinsic faults appears to 
be more complex. If this type of RSF is introduced 
into a perfect 9R structure, the intensity distribution 

{ 3C 

cr~ 
D.- 

g 

w 

z 

10.0 
t2H1 

I 3C )  

10.1 
{2)4} 

L , 
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f 
3 

102 
t 2NI  

Fig. 5. Calculated variation of the intensity distribution along the 
10.L reciprocal-lattice row of a 19T (11112445) structure con- 
taining a random distribution of  deformation faults: (1) a = 0.01; 
(2) a =0.15; (3) a =0.5. The intensity equation of Rushits & 
Mirzaev is used. 

gradually transforms to the diffraction pattern 
attributed to the 18R2 structure with a layer sequence 
(kkkhkh)3 or (42)3. In this case the most intense 
maxima of the initial 9R structure show a consider- 
ably sharper increase in breadth than in the previous 
examples and shift towards the f.c.c, reflection posi- 
tion. This allows us to distinguish the stacking dis- 
order due to deformation and extrinsic RSF's when 
the concentration of faults is small. 

4. Concluding remarks 

The present investigations of the multilayer close- 
packed structures with random stacking faults allow 
one to make the following conclusions: 

(1) The intensity distributions for the 2H, 3C and 
9R lattices disordered by RSF's are the same as those 
obtained on the basis of the well known theories of 
Wilson (1942), Paterson (1952), Christian (1954), 
Lele et al. (1967), Rushits & Mirzaev (1979) and 
Johnson (1963). 

(2) The deformation RSF's cannot transform one 
multilayer structure into another. Such transitions are 
possible when growth or extrinsic RSF's of high 
density are introduced into the initial multilayer 
structure. 

(3) For the same concentration of RSF's, the more 
streaked reflections correspond to the structures of 
greater N. For instance, the weakest reflections of the 
9R structure vanish when the density of SF's is greater 
than 0.25. As regards the 19T structure mentioned 
above, the majority of reflections disappear when the 
density of deformation faults is a = 0.15, and with 
a = 0.2 there are only single broadened reflections on 
the intensity distribution (see Figs. 4a, 5). 

Consequently, if most of the permitted reflections 
from a multilayer close-packed structure with large 
N ('vl02) are on the X-ray diffraction pattern, the 
RSF concentration of any type in this structure is not 
greater than 0.1. 

(4) The broadening of the most intense diffraction 
maxima of the initial close-packed structure is pro- 
portional to the number of layers in a SF configura- 
tion. Therefore, the other conditions being the same, 
the broadening due to the growth SF is the lowest, 
the middle broadening corresponds to the deforma- 
tion SF and the largest to the extrinsic SF (see 
Figs. 2, 4). 

The authors thank Mrs T. V. Bilenko for her tech- 
nical assistance. 

References 

BELOV, N. V. (1947). Struktura Ionnih Crystallov i Metallicheskih 
Faz. Moscow: Izd. Akademii Nauk SSSR. 

BERLINER, R. & WERNER, S. A. (1986). Phys. Rev. B, 34, 3586- 
3603. 



B. I. N I K O L I N  A N D  A. YU.  B A B K E V I C H  801 

CHRISTIAN, J. W. (1954). Acta Cryst. 7, 415-416. 
JOHNSON, C. A. (1963). Acta Cryst. 16, 490-497. 
KAGAN, A. C., UNIKEL', A. P. & FADEEVA, V. I. (1982). Zavod- 

skaya Laboratoriya, 48, 38-46. 
KAKINOKI, J. (1967). Acta Cryst. 23, 875-885. 
KAKINOKI, J. & KOMURA, Y. (1965). Acta Cryst. 19, 137-147. 
LELE, S., ANANTHARAMAN, T. R. & JOHNSON, C. A. (1967). 

Phys. Status Solidi, 20, 59-68. 
LELE, S., PRASAD, B. & ANANTHARAMAN, T. R. (1969). Acta 

Cryst. A25, 471-475. 
MIRZAEV, D. A. & RUSHITS, C. V. (1976). Kristallografiya, 21, 

670-677. 
NIKOLIN, B. I. (1984). Mnogosloynie Structuri i Politipism v Metal- 

licheskih Splavah. Kiev: Naukova Dumka. 

NISHIYAMA, Z., KAKINOKI, J. & KAJIWARA, S. (1965). J. Phys. 
Soc. Jpn, 20, 1192-1211. 

PANDEY, D. & KRISHNA, P. (1981). Indian J. Pure Appl. Phys. 
19, 796-802. 

PATERSON, M. S. (1952). J. Appl. Phys. 23, 805-811. 
RUSHITS, S. V. & MIRZAEV, D. A. (1979). Kristallografiya, 24, 

1142-1149. 
SEBASTIAN, M. T. & KRISHNA, P. (1987). Prog. Crystal Growth 

Charact. 14, 103-183. 
VERMA, A. R. & KRISH NA, P. (1966). Polymorphism and Polytypism 

in Crystals. New York: John Wiley. 
WARREN, B. E. (1969). X-ray Diffraction. Reading, MA: Addison- 

Wesley. 
WILSON, A. J. C. (1942). Proc. R. Soc. London Ser. A, 180, 277-285. 

S H O R T  C O M M U N I C A T I O N S  

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 
words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. 

• Acta Co, st. (1989). A45, 801-802 

The coset and double coset decomposition of the 32 crystallographic point groups. By V. JANOVEC and 

E. DVORAKOVA, Institute of  Physics, Czechoslovak Academy of  Sciences, POB 24, Na Slovance 2, 18040 Prague 8, 
Czechoslovakia and T. R. WIKE* and D. B. LXTVlN, Department o f  Physics, The Pennsylvania State University, The 

Berks Campus, PO Box 7009, Reading, PA 19610-6009, USA 

(Received 3 March 1989; accepted 11 July 1989) 

Abstract  

The coset and double coset decompositions of the 32 crys- 
tallographic point groups with respect to each of their 
subgroups are tabulated. 

I. Introduct ion 

The mathematical concept of the coset decomposition of a 
group with respect to one of its subgroups has wide applica- 
tions in crystallography and solid-state physics. The points 
of any crystallographic orbit are in a one-to-one correspon- 
dence with the cosets of the coset decomposition of the 
crystallographic group with respect to the site symmetry 
group of one of its points (Wondratschek, 1983). Coset 
decompositions have been applied in the analysis of 
domains of ferroic crystals using coset decompositions of 
point groups (Aizu, 1970; Janovec, 1972) and of space 
groups (Aizu, 1974; Janovec, 1972, 1976). This concept 
has also been used in the derivation of twin laws for 
(pseudo-)merohedry (Flack, 1987). 

The mathematical concept of the double coset decompo- 
sition of a group is less well known and has been used in 
applications to a lesser extent than the coset decomposition 
[see Ruch & Klein (1987) and references therein]. The 
double coset decomposition has been used in a tensorial 
classification of domain pairs in the case where each domain 
is characterized by a unique form of a physical property 
tensor (Janovec, 1972) and in the case where more than a 

* Present address: General Electric Aerospace, PO Box 8048, 
Philadelphia, PA 19101, USA. 

single domain is characterized by a specific form of a 
physical property tensor (Litvin & Wike, 1989). 

In § II we briefly review the definitions of coset and 
double coset decompositions. Tables of the coset and 
double coset decompositions of the 32 crystallographic 
point groups with respect to each of their subgroups are 
given in §I I I .  

II. Coset  and double  coset  decompos i t ions  

For a given group G and subgroup H one writes the left 
coset decomposition of G with respect to H symbolically as 

G =  H + g2H + gaH +. . . + g,,H 

where gi l l  denotes the subset of elements of G obtained 
by multiplying each element of the subgroup H from the 
left by the element gi of G (Hall, 1959). Each subset of 
elements g~H, i = 1, 2 , . . . ,  n, is called a left coset of G with 
respect to H, and the elements g~, i = 1, 2 , . . . ,  n, of G are 
called the left coset representatives of the left coset 
decomposition of G with respect to H. 

The subset of elements of G in each coset of the left 
coset decomposition of G with respect to H is unique, but 
the coset representatives are not unique. A coset representa- 
tive gi can be replaced by the element gih, where h is an 
arbitrary element of the subgroup H. 

For a given group G and subgroup H, one writes the 
double coset decomposition of G with respect to H sym- 
bolically as 

c =  n + I-tg~CI-I + ng~cH +...+ ng~°H 

where Hg~¢H denotes the subset of distinct elements of G 
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